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Abstract

A machine learning approach is taken to characterizing a group of synthetic ura-

nium bearing particles. Scanning electron microscope images of these lab-created

particles were converted into a binary string representation that captured morpho-

logical features in accordance with a guide established by Los Alamos National Labo-

ratory. Each individual particle in the dataset contains an association with chemical

creation conditions: processing method, precipitation temperature and pH, calcina-

tion temperature, source materials, additive and final products. Machine learning

classifiers take binary strings of morphology data and train on them, in order to pre-

dict the creation conditions of a test particle. Additionally, the results show that

the final products, source materials, and calcination temperature are most closely

tied to particle morphology. In addition, trained classifiers are able to successfully

relate final products between two particles, implying that morphological features are

shared between particles with similar chemical composition. The results show that

machine learning classifiers can still successfully differentiate these creation conditions

when combined into groups and considered as a whole, a result which could serve as

a valuable utility to analysts working on large forensic datasets. Of the classifiers

tested, modern techniques such as Gradient Boosting performed the best, with other

algorithms such as Bernoulli Naive Bayes and K Nearest Neighbors achieving high

performance levels as well.

iv



www.manaraa.com

Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Questions & Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Assumptions & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Uranium Bearing Particle Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Nuclear Forensic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Machine Learning Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Bootstrapping and Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Boosted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Imbalanced Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Over-Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Balanced Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 A Brief Introduction To Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Machine Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nuclear Forensics Image Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 A Neural Network Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Neural Network Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Predicting Q-value from binary morphology strings . . . . . . . . . . . . . . . . . 41
4.2 Creation Condition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Mixed Oxide Prediction Using A Pure Final Product
Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



www.manaraa.com

Page

4.3 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Classifier Performance Across All Creation Conditions . . . . . . . . . . . . . . . 53
4.5 Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Neural Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Initial Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Lexicon Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendix A. Morphology Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix B. Creation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendix C. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix D. GitHub Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



www.manaraa.com

List of Figures

Figure Page

1 Overview of the nuclear fuel cycle from beginning to
end, with the inclusion of optional reprocessing steps [1]. . . . . . . . . . . . . . . 5

2 Simplified flowchart for the reprocessing of spent fuel. . . . . . . . . . . . . . . . . 7

3 Example synthetic particle with unique project
identifier on upper left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Example two-class datasets that could be used for
classification tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Representation of how a decision tree may segment
multi-class data sets [2]. Figure reproduced from the
Python Data Science Handbook under the Creative
Commons License. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 An example of naive random over-sampling. Here, the
blue circles are the majority class, and
random-oversampling is used to duplicate arbitrary
points from the minority class, red triangle, until the
classes have equal amounts of data points. . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 An example of SMOTE over-sampling. The blue circles
are the majority class, and SMOTE is used to generate
synthetic data points in between observations from the
minority class, red triangle, until the classes have equal
amounts of data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 An example of ADASYN over-sampling. The blue
circles are the majority class, and ADASYN is used to
generate synthetic data points in between difficult to
classify observations from the minority class, red
triangle, until the classes have equal amounts of data
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 An example ANN. Input data is passed to the first layer
of nodes, which act on the data and pass it to successive
layers. Image provided by Stanford CS class CS231n
under under the MIT use license [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



www.manaraa.com

Figure Page

10 A representation of a convolutional neural network.
Image tensor data is passed to the first layer of nodes,
which act on the data and pass it to successive layers.
Image provided by Stanford CS class CS231n under the
MIT use license [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11 Correlation plot of the features used from the LANL
lexicon. It is shown that several particle traits are not
observed in the dataset. These are represented as white
bars. Dark squares imply strongly anti-correlated
features, while light blue denotes strong correlation. . . . . . . . . . . . . . . . . . 35

12 Model architecture that was used throughout the
project. Final output layer used two nodes with a
softmax activation. A Nadam optimizer was used for all
tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

13 Distribution of particles for each Q passed into the
machine learning algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

14 An ordered representation of the normalized feature
importance on Q-value classification from the
GradientBoostingClassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

15 An example prediction array. After training, machine
learning classifiers output the probability that a particle
belongs to each Q. The first element in the array is the
chance that the test particle belongs to the first
Q-value, and so on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

16 A step-wise comparison of particle morphology
occurrence between creation condition parameters. In
this case precipitation temperature [◦C] is measured
against particle angularity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

17 Particle class distribution for final product groups. . . . . . . . . . . . . . . . . . . 47

18 An ordered representation of the normalized feature
importance from the GradientBoostingClassifier for
classification on pure final products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 Confusion matrix for the pure final product test set
resulting from a trained GradientBoostingClassifier. . . . . . . . . . . . . . . . . . 50

viii



www.manaraa.com

Figure Page

20 Accuracy results from using the scikit-learn predict
function to correlate the mixed oxide final products to
their pure counterparts. A random guess threshold line
is included for ease of performance comparisons. . . . . . . . . . . . . . . . . . . . . 51

21 Adjusted, balanced accuracy results on the test set data
for each classifier used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

22 A GradientBoostingClassifier misclassification. Here
similar particles are displayed to explain possible
confusion between particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

23 A GradientBoostingClassifier misclassification. Here
different particles are displayed to present possible
limitations in the truncated lexicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

24 A GradientBoostingClassifier misclassification. Here
similar particles are displayed to explain possible
confusion between particles and their creation conditions. . . . . . . . . . . . . 57

25 A GradientBoostingClassifier misclassification. Here
similar particles are displayed to explain possible
confusion between particles and their creation conditions. . . . . . . . . . . . . 58

26 A GradientBoostingClassifier misclassification. Here
different particles are displayed to explore limitations of
the truncated lexicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

27 Model accuracy over 400 training epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

28 Model loss after training. Binary crossentropy was used
for the step two prediction, as particles in the dataset
were classified as either rounded/blocky or mixture, and
never crystalline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

29 Flowchart for the particle nature classification. This
first step allows for large particles with sub–components
to be classified separately from their sub–particles [4]. . . . . . . . . . . . . . . . 66

30 Continuation of the flowchart classification steps [4]. . . . . . . . . . . . . . . . . . 66

31 The last step that has currently been applied to the
particle dataset [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

32 First portion of the encoded creation conditions table. . . . . . . . . . . . . . . . 68

ix



www.manaraa.com

Figure Page

33 Second portion of the encoded creation conditions table. . . . . . . . . . . . . . 68

34 Last group in the encoded creation conditions table. . . . . . . . . . . . . . . . . . 68

35 Processing method morphology feature occurrence for
step 1 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

36 Processing method morphology feature occurrence for
step 2 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

37 Processing method morphology feature occurrence for
step 3 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

38 Processing method morphology feature occurrence for
step 4 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

39 Processing method morphology feature occurrence for
shape portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . 74

40 Source material morphology feature occurrence for step
1 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

41 Source material morphology feature occurrence for step
2 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

42 Source material morphology feature occurrence for step
3 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

43 Source material morphology feature occurrence for step
4 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

44 Source material morphology feature occurrence for
shape portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . 77

45 Precipitation temperature morphology feature
occurrence for step 1 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

46 Precipitation temperature morphology feature
occurrence for step 2 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

47 Precipitation temperature morphology feature
occurrence for step 3 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

48 Precipitation temperature morphology feature
occurrence for step 4 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



www.manaraa.com

Figure Page

49 Precipitation temperature morphology feature
occurrence for shape portion of step 4 in the lexicon chart. . . . . . . . . . . . 80

50 Precipitation pH morphology feature occurrence for
step 1 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

51 Precipitation pH morphology feature occurrence for
step 2 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

52 Precipitation pH morphology feature occurrence for
step 3 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

53 Precipitation pH morphology feature occurrence for
step 4 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

54 Precipitation pH morphology feature occurrence for
shape portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . 83

55 Additive morphology feature occurrence for step 1 of
the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

56 Additive morphology feature occurrence for step 2 of
the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

57 Additive morphology feature occurrence for step 3 of
the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

58 Additive morphology feature occurrence for step 4 of
the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

59 Additive morphology feature occurrence for shape
portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

60 Calcination temperature morphology feature occurrence
for step 1 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

61 Calcination temperature morphology feature occurrence
for step 2 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

62 Calcination temperature morphology feature occurrence
for step 3 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

63 Calcination temperature morphology feature occurrence
for step 4 of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xi



www.manaraa.com

Figure Page

64 Calcination temperature morphology feature occurrence
for shape portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . 89

65 Final product morphology feature occurrence for step 1
of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

66 Final product morphology feature occurrence for step 2
of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

67 Final product morphology feature occurrence for step 3
of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

68 Final product morphology feature occurrence for step 4
of the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

69 Final product morphology feature occurrence for shape
portion of step 4 in the lexicon chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xii



www.manaraa.com

List of Tables

Table Page

1 Uranium enrichment levels and their various uses. . . . . . . . . . . . . . . . . . . . . 6

2 Example representation of the one-hot encoded particle
dataset. Particle identifiers are in the leftmost column
with the numbers following the Q denoting the project,
and the numbers following the C describing the particle. . . . . . . . . . . . . . 11

3 A variety of machine learning classifiers were used
throughout the project to see which performed best on
the particle morphology dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Example representation of the one-hot encoded particle
dataset after pre-processing techniques have been
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 SMOTE classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 ADASYN classification performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Performance comparison of validation set accuracy
between oversampled and non-oversampled datasets. . . . . . . . . . . . . . . . . . 43

8 SMOTE classification performance on pure final
products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 A survey of the complete final products in the synthetic
particle creation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 An overview of the values used to hyperparameter tune
the GradientBoostingClassifier on the final products
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 An overview of the values used to hyperparameter tune
the KneighborsClassifier on the final products dataset. . . . . . . . . . . . . . . . 53

12 Final product classification results from the standard
dataset compared to variance reduced datasets.
Accuracy values are averaged over 5 random splits. . . . . . . . . . . . . . . . . . . 55

13 Particle statistics for the various Qs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

14 The class distribution for the source materials creation
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



www.manaraa.com

Table Page

15 The class distribution for the precipitation temperature
creation condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

16 The class distribution for the precipitation pH creation
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

17 The class distribution for the additive creation condition. . . . . . . . . . . . . 70

18 The class distribution for the calcination temperature
creation condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

19 The class distribution for the final product creation
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

20 Commonly used terms throughout this thesis and their
definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiv



www.manaraa.com

A Machine Learning Approach to Characterizing Particle Morphology

in Nuclear Forensics

1. Introduction

1.1 Motivation

The first nuclear weapon detonated forever changed the way that war was con-

ducted. Political superpowers around the world were spurred into pursuing their own

nuclear weapons programs. Over the next few decades following the Trinity Test in

1945, countries began proving their own technological prowess, with the Soviet Union

testing their nuclear weapons in 1949, followed shortly thereafter by the United King-

dom. The 1960s saw France and China testing kiloton class nuclear weapons, and

India followed in their steps by proving weapons capabilities in the 1970s. With most

major world powers having obtained offensive nuclear capabilities, a new status quo

emerged with these weapons exerting enormous political influence. As worldwide

technological capabilities progressed, additional nation-states sought to expand their

offensive portfolio by acquiring nuclear weapons. Continual research and development

has expanded not only the field directly involved in creating said weapons, but has

also created new fields of research entirely.

One such field that emerged alongside the advent of nuclear weapons was that

of nuclear forensics, which encompasses the branch of science that provides criti-

cal analysis of nuclear materials and process signatures before or after detonation.

Through these techniques, it is possible to identify signatures indicative of the ma-

terial’s processing history and origin. Nuclear forensic analysis can result in a deep
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characterization of the level of logistic and technological sophistication that gave rise

to the material in question. The field itself has existed since the inception of the

nuclear age, and is a major cornerstone of the International Atomic Energy Agency

(IAEA), which aims to promote the safe and peaceful use of nuclear energy. A full

forensics investigation into nuclear activities requires aggregating data points from

many different sources and experiments, so as to combine them to produce a cohesive

theory of the sample’s origin and potential uses.

The study of nuclear forensics expanded after the collapse of the Soviet Union,

when a number of cases of illicit trafficking of nuclear materials came to light, includ-

ing materials directly usable in nuclear weapons [5]. The discovery of an undeclared

nuclear weapons program in Iraq after the 1990 - 91 Gulf War further reinforced the

need for more knowledge about the nuclear capabilities of other countries throughout

the world. Nuclear forensic results allowed policy makers and state officials to be in-

formed of the status of nuclear developments both at home and abroad. Recognizing

the importance of verifying the proper use and storage of fissile materials created the

basis of several international treaties. This has shaped policy in a particular area

known as nuclear non-proliferation. Nuclear facilities across the globe are owned and

managed by a mix of government and private organizations, but most have additional

oversight as a result of the rules and regulations agreed upon from landmark non-

proliferation treaties [6]. The Treaty on the Non-Proliferation of Nuclear Weapons,

commonly known as the NPT, was the driving force behind many of these changes,

and directed its participant nations to follow the safeguards and additional protocols

created by the IAEA.
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1.2 Background

The IAEA and many other forensics related organizations can use several different

approaches to characterize a sample during a typical analysis process. These methods

can be broadly placed into two categories: destructive and non-destructive. Non-

destructive tests are often surface level experiments that preserve the integrity of the

sample. Destructive tests are those that probe the material at the cost of consuming

the sample itself. Of the two, destructive testing is typically regarded as the most

powerful category of forensics experiments, as it provides more in-depth information

about the basic composition of the materials under scrutiny. However, there is a trade-

off that occurs, as destructive tests typically require longer sample preparation times

than non-destructive tests, and remove the sample from any possible future use. As

such, a common forensics pipeline involves conducting multiple non-destructive tests

first, in order to extract as much information about the sample before its consumption

in a destructive test [7].

One such non-destructive method is Scanning Electron Microscopy (SEM). An

SEM is an instrument that uses a focused beam of high-energy electrons to image

the surface of a sample at small distance scales [8]. The device works by directing

an electron beam onto a material in a raster pattern, and capturing the resultant

secondary and backscattered electrons. These are then collected and converted to

gray-scale values to form an image. The difference in energy and yield of captured

electrons allow the SEM to operate in BSE mode for backscattered electrons, or SE

mode for secondary electrons. Of the two, SE mode is most often used due to its

increased resolution over BSE mode. SEMs feature a magnification in the range of

100 - 1,000,000 which allows them to image down to the nanometer scale, a useful

range that allows analysts to capture important details on the smallest of forensic

samples [9].
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Of all the elements on the periodic table, uranium is one of the strongest indicators

of a nuclear weapons program. It can be found all throughout the globe, with average

uranium concentrations in the Earth’s crust of roughly 3 parts per million (ppm) by

weight. Substantial uranium mining and extraction facilities can be found in many

countries, including Australia, Canada, Kazakhstan, Namibia, Niger, Russia, South

Africa, the United States, and Uzbekistan [10]. As such, it is important to be able

to distinguish between uranium production intended for peaceful and non-peaceful

purposes. The isotope of uranium that is useful in controlled nuclear reactions is

far more rare than what occurs in nature: 235U forms just 0.72% of mass of natural

uranium worldwide. Converting natural uranium extracted from the earth into a

useful form is not an easy endeavor; the need to efficiently produce uranium fuel

created a large and resource intensive process known as the nuclear fuel cycle. The

first step is to mine and extract the material, as shown in Figure 1. However, the

uranium is not immediately useful upon mining, as it is most commonly found in the

form of U3O8, which must be separated from rock via crushing and acidic leaching.

This isolates the U3O8 and allows it to be stored in a dry powdered form known as

yellowcake.

The next step in the process involves preparing the uranium for enrichment so as to

accommodate the design needs of the particular reactor it will be used in. The Canada

Deuturium Uranium (CANDU) reactor is of note here, because all operating reactors

currently use natural uranium fuel. This design is very flexible and also allows for the

use of slightly enriched uranium, recovered uranium, mixed oxide fuel, thorium fuels,

and others. These different types of fuel can be introduced to the CANDU with few or

no hardware changes, and allows the managing party to tailor the reactor to their own

needs. CANDUs are of interest in the field of nuclear non-proliferation due to their

ability to conduct on-line refueling. In this manner, Pu enriched nuclear material
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Figure 1. Overview of the nuclear fuel cycle from beginning to end, with the inclusion
of optional reprocessing steps [1].

may be collected without interrupting reactor burn cycles. However, the IAEA and

cooperating nations have included various safeguard measures for CANDU reactor

use, as fuel can proceed directly from conversion to UO2 fuel fabrication. These

precautions have served to make each generation of CANDU safer than the last [11].

For the rest of the reactor types, uranium must be enriched in 235U to a certain

level. There are a myriad of ways to do this, but most of these processes rely on a

gaseous form of uranium to allow for isotope separation of 235U and 238U. One widely

used conversion route is to transform solid U3O8 into gaseous UF6. Its widespread

use as an enrichment precursor is attributed to the fact that UF6 forms as a gas at

lower temperatures than any other uranium compound [12]. In addition, fluorine has

only a single stable isotope, which is important because many enrichment techniques

rely on mass based processes. This is not to say that it is without downsides, as

UF6 is also highly toxic and corrosive to most metals. Once converted into a gaseous
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form, uranium can be passed through several different separation methods in order to

achieve a specific level of enrichment. The intended use of the final uranium product is

strongly correlated with the level of enrichment, so this step of the fuel cycle is closely

monitored both in-house and by outside agencies like the IAEA, when necessary.

The first technology developed for the enrichment of uranium was the gaseous

diffusion method. This technique was the workhorse of the U.S.’s nuclear program

during the second World War, but has since fallen out of favor due to its immense

demands on the electrical grid. Worldwide, most programs have moved to using

centrifuge technology. This involves feeding UF6 into a gas centrifuge and spinning the

device at high speeds, thus separating the isotopes via the centrifugal force applied to

the molecules. The uranium hexaflouride molecules containing the lighter 235U atoms

collect closer to the center of the chamber, and are siphoned off and fed into further

centrifuge stages. In this manner, a large, interconnected cascade of centrifuges can

enrich uranium up to the required percentages.

Table 1. Uranium enrichment levels and their various uses.

Enrichment Level
(Weight % U-235) Use

Depleted < 0.7% Counter-weights, radiation shielding
armor plating, armor-piercing projectiles

Natural 0.7% Fuel for graphite-moderated reactors and
heavy water-moderated reactors such as the CANDU

Low Enriched 3-5% Light water reactor fuel
High Enriched >20% Research reactor fuel, nuclear weapons
Weapons Grade >90% Nuclear weapons

Uranium that is enriched up to 20% 235U is known as low enriched uranium (LEU),

and forms the category of material used as fuel for nuclear power reactors [13]. Typical

enrichment levels for power generating nuclear reactors hover around 5%. Reactors

used for research purposes have 235U assays ranging from 20% all the way up to 93%

which places them in the category of highly enriched uranium (HEU). At the highest
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levels of enrichment, uranium with a 235U assay greater than 90% is considered to be

weapons-grade (WGU) [13]. Of these different varieties, the highest risk for prolifer-

ation concern belongs to HEU. The IAEA has outlined significant quantities (SQ) of

various actinides, which represent the approximate amount of material for which the

manufacture of a nuclear device cannot be ignored [14]. The SQ for HEU is 25kg,

and takes into account the unavoidable losses experienced in conversion and manu-

facturing processes. HEU is not the only enrichment level listed as a SQ, however.

LEU is classified as an indirect use material, for it can still be converted to WGU af-

ter additional processing. This demonstrates that large quantities of uranium at any

enrichment level can serve as serious security threats and must be closely monitored

in some way. But it is not just fresh uranium that must be considered, as nuclear

materials have a unique trait that allows for their use after being spent.

Figure 2. Simplified flowchart for the reprocessing of spent fuel.

A technique called reprocessing allows for recovery of fissile and fertile material

from depleted fuel so as to make a new batch for future use. Russia, China, Japan,

and several countries in Europe have reprocessing policies or programs in place. No-

tably absent from this list is the United States, which ended its reprocessing program
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in 1977 despite inventing the most commonly used reprocessing technique. Originally

designed to recover plutonium from spent fuel, the Plutonium Uranium Recovery by

EXtraction (PUREX) process achieves the separation of plutonium from uranium

while also removing active fission products [15]. Spent uranium oxide fuel from ther-

mal reactors contains around 81 to 83 weight % uranium and roughly 4 to 6 weight

% plutonium. These quantities can vary depending on reactor burn times and flux

profiles, and can be changed to maximize uranium or plutonium production. As

such, it is important to verify whether a plant is reprocessing plutonium for mixed

oxide (MOX) fuel use, or as base material for nuclear weapons. Reprocessed uranium

(RepU) is typically held in intermediate storage in the form of UO3 or uranyl nitrate

hexahydrate (UNH) which is then converted into U3O8 through use of ammonium

diuranate (ADU). An overview of the steps in reprocessing can be seen in Figure 2.

1.3 Problem

The broad research objective for this work is: Given a set of SEM images of ura-

nium bearing particulate matter created under well known conditions, can machine

learning techniques be used to answer nuclear forensic questions about the dataset?

This research effort represents an attempt at using modern computational and sta-

tistical techniques to discover underlying trends in a synthetic reference dataset. The

research question seeks to address several different problem areas related to the anal-

ysis of small–scale particles in a typical nuclear forensics process.

1.4 Questions & Hypothesis

The main research question contains a variety of sub–problems, which are detailed

below:

• Is it possible to distinguish among the project numbers in the syn-
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thetic dataset? Project numbers denote a specific grouping of creation con-

ditions belonging to a program, location, or group. Being able to tell samples

apart based on project number association implies that the morphology of a

particle can tie it back to unique creation conditions.

• What are the most useful morphological features of a sample parti-

cle? There are many different ways a particle can be classified, but if only a

small portion of features can serve to tie a particle with its creation conditions,

then time spent analyzing a particle can be greatly reduced. This could also

imply that certain features are more strongly associated with specific creation

conditions.

• Can this dataset form an adequate reference for real life forensics

data? The idea behind the synthetic particles was to create samples under

well controlled laboratory conditions. Whether or not these conditions can be

associated with real–world data remains an open question.

• Can any correlation be determined to associate a particle’s morpho-

logical features with the chemistry conditions under which it was

formed? If the physical features of a particle can be associated with the com-

plex processes that created it, then a deep characterization of a sample’s history

would be possible exclusively through the use of non-destructive imaging tech-

niques.

1.5 Approach

Experimental data is stored in the form of high-resolution grayscale tiff files, as

shown in Figure 3. In total the dataset forms a catalog of 3,000 SEM images with over

700 unique synthetic particles. The dataset was created over multiple months, and
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uses a unique project number for each batch of particles created. AFIT researchers

have converted these images into binary strings via a process laid out in a paper from

Los Alamos National Labs (LANL) [4]. These binary strings represent a flow chart

encoding of the descriptive features of each particle, and form a standardized way

to compare particles against each other. In machine learning jargon, this is known

as one-hot encoding: a process where observed object features are given values of 1,

and absent features are assigned 0. Not all the available images could be converted

Figure 3. Example synthetic particle with unique project identifier on upper left.

to one-hot encoded strings, however. Some images were blurry and low quality, while

others contained too many varieties of particles to consistently classify. These entries

were listed as such in the data files that contained the strings, and were simply left as

rows of all zeros. These entries were ignored for the entire machine learning process.

As a result, the dataset fell to a total of 659 unique particles. A full list of the creation

conditions for the samples can be found in Appendix B in Tables 32 through 34. After

being passed through the LANL encoding process, the final dataset resembled Table

2, with each particle being assigned a string consisting of ones for features observed

and zeros for features not present on the particle.
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Table 2. Example representation of the one-hot encoded particle dataset. Particle
identifiers are in the leftmost column with the numbers following the Q denoting the
project, and the numbers following the C describing the particle.

Q-Identifier Individual Particle Congolomerate Agglomerate

Q016316C10001 0 1 0
Q016316C10002 0 0 1
Q016316C10003 1 0 0

1.6 Assumptions & Limitations

Like many scientific experiments, a large portion of the analysis process involves

understanding the data: how it was collected, where the data is sufficient, where it

is lacking, and so forth. Every nuclear forensics investigation attempts to use all of

the information at hand to produce a well thought out interpretation of the sample’s

origin, significance, or composition. This research project is no different, and any

results derived from the dataset are limited by the variety of samples provided. This

first limitation diminished the full extent of the dataset, but not severely enough that

statistical learning could not be carried out. Particle one-hot encoding was carried

out according to the process established by the LANL paper which outlined 11 total

steps for particle morphology classification. In the interests of time, only the first four

steps of morphological characterization have been applied. It is assumed that machine

learning models can correctly distinguish particles based on their creation conditions

with only four out of eleven total steps of the LANL lexicon. This assumption will

be tested during the course of the data analysis. Despite having less than half of

the steps possible, the amount of different inputs for each sample with just four

morphological categories is still very high and the amount of difference from sample

to sample may still allow for a machine learning model to distinguish between two

samples of interest. If additional morphological lexicon steps are to be added in a

future extension of the project, another limitation will be introduced. Increasing

classification parameters of a particle could lead to decreasing prediction accuracy.
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This is a common problem in the field of machine learning known as the curse of

dimensionality. First coined by Richard E. Bellman, it refers to the problems that

arise when attempting to analyze data in high dimensional spaces [16]. For a dataset of

fixed size, increasing the parameter space, in this case the classification steps, results

in an increasingly higher dimensional dataset which tends towards high sparsity due

to the non-continuous binary nature of the data, and thus introduces a more difficult

parameter space operate on.
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2. Theory

2.1 Uranium Bearing Particle Formation

A common line of thought in the field of nuclear forensics is that several differ-

ent processing parameters such as chemical composition of feed material, calcination

temperature and duration, and precipitation conditions can all affect the resultant

morphology of product particles. If these effects can be studied and well understood,

then physical characteristics of samples such as shape, size, and surface characteris-

tics could possibly be associated with unique processing conditions. This allows for a

means of uncovering the techniques and capabilities of the process that produced the

samples in question. In order to understand how morphological features may repre-

sent sample creation conditions, it is useful to review the wide variety of techniques

used in uranium refining.

A refinery commonly accepts uranium ores made of uranium oxides or uranium

diuranate. The first step in the refining process is the dissolution of uranium in nitric

acid. This produces an aqueous solution of uranyl nitrate hexahydrate: UO2(NO3)2 ·

6H2O, which contains excess nitric acid and various metallic impurities. The next

step in the purification process is the separation of uranyl nitrate from other metal-

lic impurities via solvent extraction. Most uranium refineries use tributyl phosphate

(TBP) dissolved in an inert hydrocarbon diluent as a solvent. This is due to its useful

properties: it is nonvolatile, chemically stable, and selective for uranium [17]. From

here a selected ore may go through a variety of processes depending on the partic-

ular method used by a uranium refinery, but main steps involve passing the sample

through a dissolution stage using 40% HNO3, then onto a scrubbing section, and

finally a uranium stripping column, which leaves a uranyl nitrate (UNH) solution.

This aqueous solution then is converted to UO3 in two steps: concentration and deni-
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tration. First, UNH is evaporated in a boil-down tank to a liquid with a composition

similar to hexahydrate. Next, the nitrate is removed through the use of a heated

pot, a fluidized bed, or a stirred and heated trough, all of which results in UO3 as

a final product. UO3 can be converted to UO2 through reduction with cracked am-

monia gas (3H2 : 1N2) around 590◦ C in two fluidized reactors with counter-current

flowing solids and gases. Any exhaust gases are filtered to remove dust that has

become incorporated into the flow. The gases are then cooled to condense steam

as in UO3 + H2 → UO2 + H2O. This step must be performed carefully to prevent

sintering effects on the oxides, in order to obtain a product that will react well with

HF in preparation for enrichment. If the UO2 is to be used as fuel in a CANDU type

reactor, then the reduction is done at a higher temperature, so as to make a denser

fuel [17].

Hydroflourination is the next part of the process, which converts UO2 to UF4 via

the exothermic reaction UO2 + 4HF 
 UF4 + 2H2O. The United States’ uranium

plants achieve this through use of two stirred fluidized-bed reactors in series, with

a counter-current flow of solids and gases [17]. A hot bed which runs at 300◦C is

fed UO2 and partially converts it to UF4. A hotter bed running at 500◦C is fed

anhydrous HF and partially converted UO2, converting more the 95% of the UO2 to

UF4. Any effluent gases are filtered and cooled, so as to remove entrained solids and

to condense aqueous HF. The final step in the process is to fluorinate UF4 to UF6.

The U.S. Department of Energy (DOE) has two plants that do this through fluorine

reactions in tower reactors [17]. Solid UF4 and a small excess of fluorine gas are fed

into the top of a monel reactor with walls cooled to 500◦C. A majority of the UF4

reacts instantly with a flame temperature of approximately 1600◦C. Small portions

of unreacted UF4 and uranium oxides are removed from the tower and passed to the

previous step. Effluent gases containing UF6, fluorine, and diluent gases are cooled

14



www.manaraa.com

to 150◦C and passed through filters to remove any trapped solids. Cold traps cooled

at −10◦C then condense most of the UF6 into a solid. Any residual fluorine gas

leaving the cold trap is then removed by an additional reaction with UF4 in a fluid

bed reactor. This forms UF6 and intermediate fluorides like UF5. Exhaust gases from

this reactor go into another cold trap kept at −50◦C which condenses most of the

UF6. The very last traces of UF6 are removed by a second fluid bed reactor, which

reduces the presence of UF6 in exhaust gases to less than 10 ppm. UF6 produced with

these techniques is very pure, with total UF6 output exceeding 99.5% purity [17].

Enriched or depleted uranium is usually produced in the form of UF6, but is used

as metallic uranium or UO2 in power reactors. This requires the conversion of UF6

to either UF4 or UO2. For the former, UF6 is converted to UF4 through vapor-phase

reduction with hydrogen. Because the heat of reaction is small, the mixture must be

heated by some other process. In small chemical reactors, this is commonly provided

by reacting fluorine with hydrogen. In contrast, the conversion of UF6 to UO2 has

three different possible routes. In the first, UF6 is reduced to UF4 and then hydrolyzed

by steam:

UF4 + 2H2O→ UO2 + 4HF, (1)

which is the reverse of the reaction used to make UF4. In the second process, UF6

is hydrolyzed to UO2F2 by solution in water. Ammonia is then added to precipi-

tate ammonium diuranate as shown below. The diuranate is reduced to UO2 with

hydrogen as a final step:

2UO2F2 + 6NH4OH→ 4NH4F + (NH4)2U2O7 + 3H2O. (2)

In the third method, known as the ammonium uranyl carbonate (AUC) process,
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streams of gaseous UF6, CO2 and NH3 are fed batchwise into water that has been

de-mineralized. This precipitates (NH4)4UO2(CO3)3, which is then converted to UO2

through contact with steam and hydrogen in a fluidized bed at 500◦C. This allows

for the recovery of UO2 after separation from CO2 and NH3 [17].

2.2 Nuclear Forensic Analysis

A sample that is under investigation in a typical nuclear forensics process may

have gone through any of the aforementioned processes to arrive at its final state.

As such, a wide variety of chemical, physical and analytical techniques are required

to properly discern the methods used to create a sample of interest. Specifically, the

materials are searched for “signatures”, which describe material characteristics like

isotopic abundances, elemental concentration and physical morphology. For nuclear

materials, signatures can be created, destroyed or modified at each step in the fuel

cycle. Despite this, each stage of the process generally results in materials with

unique sample traits, known as process signatures [18]. A multitude of instruments,

employing both destructive and non–destructive techniques are used to extract these

signatures. In reference to the dataset used for analysis, the particulate samples

underwent a few different processes before undergoing SEM analysis. For small–scale

particulate, one of four methods is generally employed to process samples: direct pick,

sonication, ashing and fission track. In fission track analysis, samples are detached

from the originating medium and dispersed onto a thin film of Lexan polycarbonate

substrate. The films are then neutron irradiated, with fissile materials leaving behind

fission tracks in the surrounding media [19]. This clues analysts into the presence

of fissile material, which allows specific particulate to be selected based upon the

quantity of fission tracks emanating from the sample.

In sonication, the sample is deposited into a tube containing a solvent. It is then
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placed into an ultrasonicator for some amount of time. Material that is released from

the sample media falls to the bottom and is extracted as microscopic particulate. Ash-

ing involves placing a sample into a crucible and burning off carbon based material.

The bottom of the crucible contains the remaining material, which is then washed

and dispersed for further analysis. Lastly, the most basic of the techniques: direct

pick. Double sided carbon sticky-tape on a SEM stub is used to randomly sample

the surface of sample media. Samples are then dispersed on a surface to decrease the

particle density before further analysis.

2.3 Machine Learning Foundations

The scope of this project involves the use of machine learning classification al-

gorithms over standard regression models. This is because our intended response

variables are qualitative instead of quantitative, or more simply stated as labels in-

stead of numerical quantities. As an example, eye color is qualitative, as it takes on

non-numerical values such as green, brown or blue. Qualitative variables are often

interchangeably referred to as categorical variables. The process behind predicting

a categorical response is known as classification, of which there are many different

techniques. As with linear regression, a classification algorithm takes a set of train-

ing observations (x1, y1), ..., (xn, yn) to build parameters for the purpose of creating a

response prediction. In a two class setting, the machine learning algorithm predicts

p(X) = p(Y = 1|X) or p(X) = p(Y = 0|X) where 0 and 1 correspond to nu-

merically converted representations of the input classes, and variable Y denotes the

output labels of each data point. An example classification process would be to take

a single data point from a plot in Figure 4, with coordinates (x1, x2) and label (y),

pass it through a classification model, and predict the probability that it belonged to

each class. The class with the highest probability is then assigned as the predicted
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response, and is compared to the actual class, y for purposes of error calculations.
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Figure 4. Example two-class datasets that could be used for classification tasks.

2.4 Decision Trees

Tree-based methods are a subset of machine learning techniques that are used to

segment the data-space into a number of smaller regions. The mean or the mode

of the observations in these regions are then used to make predictions about the

dataset, such as assigning classes or probabilities [20]. Standard tree-based methods

are simple and allow for ease of interpretation, but as a result are not able to compete

with other popular techniques in the field. Additional techniques such as bagging,

random forests, and boosting have been developed that have greatly improved the

performance of tree-based methods and allow them to be a viable candidate for an

accurate machine learning algorithm. Each of these methods creates multiple decision

trees which can be combined to yield a single, averaged, consensus prediction.

The regions shown in Figure 5 denote terminal nodes or leaves of the decision tree.

These refer to areas where splits are no longer occurring, and are the final step in

the decision making process [21]. For a classification tree the predicted response, y,

is simply the most commonly occurring class of observations within any given region
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Figure 5. Representation of how a decision tree may segment multi-class data sets
[2]. Figure reproduced from the Python Data Science Handbook under the Creative
Commons License.

of interest. In order to arrive at this point, the tree must first be built, in accordance

with broad tree–building rules:

1. Start with the full dataset X with features p and output labels y, call this the

parent node.

2. Split the parent node at the feature pi to minimize the sum of the child node

impurities (maximize homogeneity).

3. Assign samples to new child nodes.

4. Stop if child nodes are homogeneous or some early stopping criteria is satisfied.

If not, repeat steps 2 and 3 for each new child node.

For every observation that falls into a region of interest, R, the same prediction

is made, which is the most commonly occurring class for the training observations

contained in R. The splits that form segmented regions seek to minimize some error

parameter in order to increase the overall accuracy. For classification trees, the metric

used is the classification error rate which is defined as the fraction of the training

observations in that region that do not belong to the most common class.

Em = 1−max
k

(p̂mk) (3)
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Where p̂mk represents the proportion of training observations in the mth region that

are from the kth class. In practice, the classification error is not a useful condition

for growing trees, and has been replaced by a metric known as the Gini index:

G =
K∑
k=1

p̂mk(1− p̂mk), (4)

which is a measure of total variance across K classes [20]. The Gini index takes on

a small value when all of the p̂mk’s are close to zero or one, which means that the

Gini index is minimized when all or most the observations in a region Rm belong to

a single class.

2.5 Bootstrapping and Random Forests

Decision trees feature a drawback of tending to high variance or overfitting. This

means that the tree models are very sensitive to small changes in the dataset, which

could potentially lead to poor performance on new datasets or inputs. Bootstrap

aggregation, also known as bagging, is a variance reduction technique used to great

effect in decision trees.

Given a set of n independent observations Z1, Z2, ..., Zn, each with variance σ2,

the variance of the mean Z̄ is given by σ2n. Thus it is seen that averaging a set of ob-

servations reduces the variance. This allows for an increase in prediction accuracy via

the process of taking many training sets from the dataset, building a new prediction

model for each set and then averaging the many predictions:

f̂ave(x) =
1

B

B∑
b=1

f̂ b(x). (5)

Where f̂ 1(x), f̂ 2(x), ..., f̂B(x) are the B different predicted models that are averaged.

Given the limits of acquiring data in a real world scenario, this is not often the most
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practical method. Instead, a technique called bootstrapping can be applied which

involves taking repeated samples from a single training datatset, which generates

B bootstrapped datasets. It is then possible to train a machine learning model on

the bth bootstrapped training set in order to get f̂ ∗b(x) and then average all the

predictions to obtain a single bootstrapped prediction:

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x). (6)

Bootstrap aggregating (bagging) is applied to decision trees by the construction of B

trees using B bootstrapped training sets, and then averaging the resulting predictions.

This creates an effect that helps mitigate overfitting, as each individual tree has high

variance, but through the process of averaging the trees, variance is reduced. Bagging

can be applied to classification problems by recording the class predicted by each of the

B different trees, and taking the majority vote [20]. The overall prediction of the tree

is the most commonly occurring majority class among the B different predictions.

The key takeaway is that bagging improves prediction accuracy at the expense of

interpretability, as a single tree is no longer responsible for the outcome predictions.

2.6 Random Forests

Random forests provide a performance increase over decision trees via the intro-

duction of a random element with the construction of every tree. As with the bagging

process, a large amount of decision trees are built on bootstrapped training samples.

The main difference arises when building the trees, as each time a split occurs, a

random sample of m predictors from the full set of p predictors is chosen as the can-

didates to split on. Each split is restricted to choosing only one of the m randomly

chosen predictors, which helps decorrelate the decision trees from one another. Ev-
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ery time a split is made, a new sample of m predictors is taken, with values of m

typically around m =
√
p [20]. What this means for the decision tree is that at each

split made, the tree-building algorithm is not allowed to consider a majority of the

dataset’s predictors. Such a restriction allows the decision tree to avoid any overly

strong predictors that may overwhelm other predictors in the dataset. This forces

variety into the construction of the trees, which prevents predictions from the many

bagged trees from being over-correlated. This is an effective technique because on

average, (p−m)/p of the splits will not consider the strong predictor, which gives the

rest of the dataset a chance to influence the resulting tree architecture. The introduc-

tion of splits on random subsets of the predictor-space allows for reduced variance to

be achieved through a combination of diverse tree models. The original application

of this technique allowed each classifier to vote for a single class [22]. In contrast,

Python’s sci-kit learn implementation of random forests combines the many different

classifiers by averaging their probabilistic predictions [23].

2.7 Boosted Trees

Decision trees and random forests can be improved upon through the use of boost-

ing, a technique which aggregates weak learners, classifiers which have relatively poor

performance levels, into a single classifier with arbitrarily high accuracy [24]. This

differs from bagging, which builds many trees, all independent of each other. Boost-

ing also does not involve bootstrap sampling; each tree is sequentially grown using

information from previous trees, each on a modified version of the original dataset.

This approach helps avoid the overfitting problem by learning the data slowly through

the combination of a large number of decision trees f̂ 1, f̂ 2, ..., f̂B. Given a current

model, the newest decision tree update is fit to the residuals of the current model

instead of the outcome Y . The new decision tree is added to the fitted function and
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the residuals are then updated. Each individual tree can be rather small, with just

a few terminal nodes, as controlled by the split parameter d. By fitting many small

trees to the residual of the function, f̂ is slowly improved in areas of poor perfor-

mance. An additional parameter, λ, controls the parameter shrinkage, slowing the

fitting process down even more to allow for a variety of trees to fit the residuals. In

essence, a boosted tree algorithm operates in the following sequence [20]:

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, .....B repeat:

• Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training data (X, r).

• Update f̂ by adding a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (7)

• Update the residuals:

ri ← ri − λf̂ b(xi). (8)

3. Output the boosted model:

f̂(x) =
B∑
b=1

λf̂ b(x). (9)

The above describes the foundations for a boosted regression tree. A boosted clas-

sification tree is similar, but uses a negative multinomial log-likelihood loss function

with N mutually exclusive classes, and constructs K least squares trees in each iter-

ation [25]. Each tree is fit to its respective negative gradient vector gkb:

gkb = −
[∂L(yi, f1(xi), ..., fk(xi))

∂fk(xi)

]
, (10)

23



www.manaraa.com

and is used to update the residuals in each step. A boosted classification tree differs

from a regression tree in that it repeats step 2 above a K number of times at each

iteration b, once for each data class. This results in an output at step 3 which contains

K different tree expansions fkB, b = 1, 2, ...K. These final trees produce classifications

on the input data.

2.8 Imbalanced Datasets

Many different machine learning algorithms operate on two broad assumptions in

order to make sensible predictions on a given dataset:

• Maximizing predictive accuracy is the goal of the algorithm

• During use, the algorithm will draw data from the same distribution as the

training data

Because of the assumptions made, if a machine learning classifier is trained on an

imbalanced datatset, predictions will be heavily skewed towards the majority class.

As an example, if 99% of data belongs to a single class in a two-category classification

problem, a learning algorithm will max out at 99% accuracy, as it will label every

output as the majority class unless instructed otherwise [26]. In order to successfully

learn on an imbalanced dataset, one of the previous assumptions will almost certainly

be ignored. A common method for dealing with imbalanced datasets involves rebal-

ancing the class representations. This can be done through upsampling techniques

via duplication of minority samples, or downsampling via exclusion of majority sam-

ples. Through one or more of these techniques, a machine learning algorithm can be

trained on a dataset with equal representations of all classes. This is of particular use

when the minority classes contain too few data points to fully characterize the class

of interest.
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2.9 Over-Sampling Techniques

The first, and most basic over-sampling technique is naive random over-sampling.

This generates new samples in under-represented classes by randomly sampling with

replacement until the minority class has as many data points as the majority class.

This is shown in Figure 6, where two classes are balanced by repeated draws to the

minority class. This approach gives the machine learning model more examples to

train on, ideally boosting predictive accuracy. A drawback to this technique is that

the model’s generalization abilities do not increase as much when compared to other

methods because the new data points are simply repeated samples drawn from the

minority class.
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Figure 6. An example of naive random over-sampling. Here, the blue circles are the
majority class, and random-oversampling is used to duplicate arbitrary points from the
minority class, red triangle, until the classes have equal amounts of data points.

A more popular technique for oversampling is known as the Synthetic Minority

Oversampling TEchnique (SMOTE), which is considered the de facto methodology

in the framework of learning from imbalanced data [27]. Here, a minority class is

over-sampled by the creation of synthetic data points. In this process, each minority

sample is chosen along with its k minority class nearest neighbors. Samples are

generated by taking the difference between the sample under consideration and its

nearest neighbor. This difference is multiplied by a random number in the range of
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(0,1), and then added back to the sample under consideration. Effectively, this causes

the new synthetic data point to be randomly selected from the line segment joining the

minority point and its k nearest neighbor. This forces the machine learning algorithm

to create larger and less specific decision regions. These more general regions are now

learned for the minority class samples which allows for a more equal representation

against a majority class. The resultant effect is that decision trees are then able to

generalize better over the scope of the entire feature-space, which allows for increased

performance [28]. An example of how this process creates new data is shown in Figure

7.
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Figure 7. An example of SMOTE over-sampling. The blue circles are the majority
class, and SMOTE is used to generate synthetic data points in between observations
from the minority class, red triangle, until the classes have equal amounts of data
points.

A more recent technique developed for oversampling is ADASYN, which is an

ADAptive SYNthetic method for generating samples from a minority class. ADASYN

differs from SMOTE in that it takes a weighted distribution for each minority class

sample according to the difficulty in learning that sample. In short, more synthetic

data points are generated near minority class samples that are harder to learn or

frequently mis-classified. The manner in which they are placed is similar to SMOTE;

new data points are placed on the line segment joining the minority point and its k

nearest neighbor. Creating data in this manner improves the learning process in two
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ways: reduction of bias introduced by the class imbalance, and adaptively shifting the

classification boundary towards difficult examples [29]. An example of how ADASYN

generates new data points in the minority class can be seen in Figure 8.
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Figure 8. An example of ADASYN over-sampling. The blue circles are the majority
class, and ADASYN is used to generate synthetic data points in between difficult to
classify observations from the minority class, red triangle, until the classes have equal
amounts of data points.

2.10 Balanced Accuracy

In binary and multi-class classification problems, using standard accuracy metrics

is a concern when dealing with imbalanced datasets. In particular, the use of standard

accuracy metrics may not reflect the full capacity of an algorithm, as a model trained

to perform classification on a multi-class problem with an imbalanced dataset may

produce a trained model that is biased towards the majority classes [30]. Reporting

accuracy metrics on a test dataset that is imbalanced in the same manner may produce

overly optimistic accuracy values at best, and exclusive predictions of the majority

class at worst. Several efforts have been made to address the problem, namely those

by Akbani et al, Chawla et al, and Japkowicz et al [28, 31, 32]. Resampling, for

example, may be used to restore class balance by oversampling the minority classes

or undersampling the majority classes. Another approach would be to modify the cost

of mis-classifications such that no bias is acquired in the process of building a model.
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While the aforementioned methods work to prevent model bias, they do not in general

protect against optimistic accuracy reporting. One method used to overcome these

limitations is the replacement of average accuracy with balanced accuracy, which

is defined as the macro-averaged accuracy obtained on each class [33]. Without

adjustment of values, the best score is one, and the worst is zero. Using adjusted=True

in scikit-learn modifies the value range to [23]:

1

1−Nc

to 1, (11)

where Nc is the number of classes. An adjusted balanced accuracy score less than

zero indicates worse than random performance. The balanced accuracy values are

calculated via the use of sample weights, where yi is the true value of the i-th sam-

ple and wi is the corresponding sample weight, then the adjusted sample weight is

calculated:

ŵi =
wi∑

j 1(yj = yi)wj

, (12)

where 1(x) is the indicator function which is equal to one if (yj = yi) and zero

otherwise. Given a predicted ŷi for sample i, the balanced accuracy can be numerically

defined as

balanced acc(ŷ, y, w) =
1∑
ŵi

∑
i

1(ŷi = yi)ŵi, (13)

with adjusted = True, balanced accuracy reports the relative increase from bal-

anced accuracy(y,0,w) = 1
Nc

.

2.11 A Brief Introduction To Neural Networks

An additional research effort throughout the course of the project involved taking

the SEM images directly as an input dataset. Because neural networks were not the

focus of the project, only a very top level introduction will be given. This type of
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machine learning effort was made possible because of the rapid rise of Artificial Neu-

ral Networks (ANNs) in the field of computer science. ANNs are machine learning

systems that derive their basis from biological nervous systems, such as the human

brain. These models consist of many interconnected computational nodes shown in

Figure 9, and referred to as neurons [34]. These neurons contain weights that are

collectively learned in order to optimize an output of the network. However, tradi-

tional ANNs struggle with the complexity that arises from image-based data. Here a

different type of approach is preferred: a Convolutional Neural Network (CNN).

Figure 9. An example ANN. Input data is passed to the first layer of nodes, which
act on the data and pass it to successive layers. Image provided by Stanford CS class
CS231n under under the MIT use license [3].

CNNs are similar to ANNs in that they are constructed from layers of neurons

that are optimized over the course of the learning process. As with ANNs, each

neuron receives an input, performs an operation on it, and passes the result to the

next layer. The reason that CNNs are much better than traditional ANNs is because

of the architecture and style of neurons used. A typical input is a 3-dimensional image

tensor with dimensions denoted by H rows, W columns, and 3 color channels. This

input is fed to the network, which then considers small segments of the image at a

time, in a similar fashion to the human eye. Within the CNN, there are three main
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types of layers used to process image data: convolutional layers, pooling layers, and

fully connected layers. The convolutional layer, shown in Figure 10, modifies inputs

via matrix multiplication and pass the resultant output to further layers. Pooling

layers perform various forms of downsampling operations, thus reducing the amount

of parameters the network needs to process. Finally, CNNs frequently terminate

with fully connected layers, exactly like those used in ANNs and shown in Figure

9. Through use of the aforementioned layers, CNNs can take image-based data and

transform the inputs layer by layer in order to produce outputs for regression and

classification purposes.

Figure 10. A representation of a convolutional neural network. Image tensor data is
passed to the first layer of nodes, which act on the data and pass it to successive layers.
Image provided by Stanford CS class CS231n under the MIT use license [3].
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3. Methodology

3.1 Machine Learning Process

A standard machine learning task involves taking aggregated data and using it to

make a prediction or classification on the dataset. This is possible through the ap-

plication of statistical learning methods, which build a mathematical model from the

input data. There are certain guidelines to be followed in order to ensure sound, sci-

entific decisions can be made which lead to maximal model utility. As such, datasets

in machine learning experiments are usually split into three portions: training, valida-

tion, and testing. Each describes different steps in the analysis process, and effective

utilization of the three datasets is key to delivering a well thought out model. The

training set is the first step in the process, and is usually the largest split of the

three datasets. Here, machine learning techniques are applied to the training set in

order to learn or train the parameters that allow for later predictive use. In this step,

algorithms shown in Table 3 were applied in tandem so as to compare performance

in later steps. This collection of algorithms was chosen due to its variety in classifica-

tion methods, as well as its use of modern machine learning techniques. The relative

strengths and weaknesses of certain classifiers could be covered by others on the list,

which gave a good basis for choosing a main classifier later throughout the project.

Table 3. A variety of machine learning classifiers were used throughout the project to
see which performed best on the particle morphology dataset.

Type of classifier Classifiers

Nearest-neighbors based KNeighborsClassifier
Support Vector SupportVectorClassifier (SVC)
Tree-based Decision Tree
Tree-based RandomForest
Naive Bayes statistics Bernoulli NaiveBayes
Bayes statistics LinearDiscriminantAnalysis
Tree-based GradientBoostingClassifier
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The validation set is used to tune and compare performance of the algorithms that

were trained in the previous step. Here, model hyperparameters may be changed and

iterated over, in order to provide the best possible predictive performance on the

validation set. The validation set allows for an unbiased look at model performance

that results from being fit on the training set. Finally, the test set, sometimes called

the holdout set, is the last step which is used to measure final model performance.

It is kept hidden (held out), and decisions are not allowed to be made based on the

performance of the model on the test set, as it is made to resemble real world data

that the model must interpret. If a model has been properly trained to avoid issues

with overfitting, and the test set is independently drawn from the same probability

distribution as the training set, favorable results can be expected, presuming the

dataset provided contains distinguishable patterns and thus provides favorable results.

Decision tree type algorithms were used as the main machine learning tools for

much of the research project, as they are simple and useful for interpretation [20]. In

addition, many additional techniques such as bagging, random forests and boosting

make these algorithms flexible and capable of reaching high levels of accuracy. In

particular, scikit-learn’s GradientBoostingClassifier was used because it provided an

accurate and effective off-the-shelf model capable of handling multi-class problems

[23].

3.2 Nuclear Forensics Image Lexicon

The physical characteristics of nuclear materials can provide a preliminary method

of determining the process history behind the sample. A commonly used tool in the

forensics process is the SEM, which allows for characterization of sample texture,

surface features, structure, size, and grain boundaries [35]. However, methods that

allow for a standard comparison between experiments are few and far between. As a
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result, comparisons between images are often subjective, with each researcher having

to establish their own methodology in order to draw conclusions [36–40].

A team from the Los Alamos National Laboratory designed a flowchart based

methodology in order to overcome the limitations of subjective sample comparisons.

A well laid out lexicon of defined terminology for characterization of morphological

features is presented, which allows for a consistent, thorough description of a sample

under scrutiny [4]. The lexicon itself is built upon terms commonly used in the study

of geology, powder science, mineralogy, and crystallography [41, 42]. The flow chart

structure begins with more general descriptors of particle morphology, and becomes

increasingly specific as the steps progress. The process begins with classifying the

types and quantities of particles, and ends with surface and texture features.

There are 11 total steps in the flow chart. The first step gives an overall assessment

of the particle in the SEM image: it is categorized as individual, complex, sub-grains,

and clumped or massive material. The following steps classify the overall particle

morphology. Due to time limitations, only the first four steps in the lexicon flowchart

were classified for each of the particles in the dataset. The charts for each step can

be found in Appendix A.

3.3 Data Processing

For ease of analysis, the columns in the encoded dataset were renamed to a con-

sistent naming scheme, such as S1F1 for “Step One, Feature 1”. The particle excel

file contained a column of Q-string identifiers, which were initially listed in strings

such as ‘Q019907C8020’. In order to classify this, the columns were stripped of the

particle numbers so that only the project numbers were left, ex: Q019907. The

project numbers were then passed through scikit-learn’s LabelEncoder which created

56 different classes of particle, 0 through 55. These numerical classes were treated
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as the truth-values and were used in the machine learning process in place of the

project numbers. In addition, features that did not occcur in the dataset were iden-

tified from Figure 11 and had their columns removed from the input dataset. These

consisted of S2F3 (crystalline), S4FE (fibrous), S4FF (ribbon-like), S4FH (straight),

and S4FK (twisted). This allowed for dimensionality reduction without the need for

extensive feature engineering. As a result of the pre-processing changes, the morphol-

ogy dataset appeared as shown in Table 4 with a total of 659 rows and 26 columns

of binary encoded data, each representing a unique isolated particle.

Table 4. Example representation of the one-hot encoded particle dataset after pre-
processing techniques have been applied.

Class S1F1 S1F2 S1F3 S2F1 S2F2 S3F1

1 0 1 0 0 1 0
1 0 0 1 0 1 0
1 1 0 0 1 0 0
2 1 0 0 0 0 1
2 0 1 0 0 0 1

.

.

.
55 0 0 1 0 1 0

A separate csv file was read in that contained columns of data for each Q: project

number, source material, processing method, precipitation temperature, precipita-

tion pH, additive, calcination temperature, and final product. These values were

compared to the original data matrix and each particle was assigned its specific cre-

ation conditions. Processing method required additional steps, as there were often

multiple processing methods within a single Q, so an alternate routine was developed

to match individual particles to their respective processing method. Having all par-

ticles matched to individual creation conditions enabled analysis of particle statistics

as well as majority and minority classes for each creation condition, the results of

which can be found in Tables 13 - 18 from Appendix B. Each group of creation con-
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Figure 11. Correlation plot of the features used from the LANL lexicon. It is shown
that several particle traits are not observed in the dataset. These are represented
as white bars. Dark squares imply strongly anti-correlated features, while light blue
denotes strong correlation.

ditions was passed through scikit-learn’s LabelEncoder to convert the data into the

appropriate format for machine learning algorithms. Now the encoded creation con-

ditions were used as the input truth values for the learning process, and were passed

into the algorithms along with the encoded binary strings. A variety of classifiers

were trained on the data, and accuracy metrics were compared amongst algorithms
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to measure relative performance levels.

Feature engineering was not widely pursued throughout the project, as the aim

was to preserve the integrity of the LANL lexicon and all the steps it contained.

One method that was used briefly was variance reduction of columns. Scikit-learn’s

VarianceThreshold routine allows for a simple approach to feature selection, and

works by removing all columns of data with variance levels that do not meet some

threshold. By default it removes all zero-variance columns, more easily expressed as

columns with the same value in all samples. This is useful on the one-hot encoded

data, as features that are all zeros or all ones can easily be pruned from the dataset.

One-hot datasets use Bernoulli random variables, which have a variance given by:

V ar[X] = p (1− p), (14)

where p measures the ratio of zeros or ones to the total amount of data in a column.

The new dataset with less columns could now be used in place of the original for

training machine learning models. Several different variance thresholds were tested

to check for possible accuracy gains through the project. To do so, for a given

probability level, models were trained 5 times, with different splits of the dataset in

each iteration. Results were averaged and compared between non-variance reduced

datasets and those with variance reduction.

3.4 A Neural Network Approach

A large portion of the particle classification process involves a human in the loop,

requiring each particle to be carefully analyzed by hand before being converted to a

binary string format that may be useful to a machine learning classifier. A possible

method of encoding the morphological features of each particle without requiring
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the constant presence of a human would be to use a neural network to directly read

the image and output a representative binary string. This idea is not unique, a

group lead by Daigo Shoji built a convolutional neural network (CNN) for a similar

endeavor [43]. Shoji et al used a CNN to classify the morphological features of

volcanic ash, so as to trace the samples back to their creation conditions. CNNs

were chosen because of their use in processing data with grid-like topology, such as

with images. CNNs are described by neural networks that use convolutions in place

of general matrix multiplication in at least one of their layers [44]. This project

represents a strong parallel to the task at hand, as it involves the use of CNNs to

classify small-scale particles based on their morphological parameters. Much like with

the nuclear forensics samples, it is believed that the shape of volcanic ash particles

is heavily influenced by the creation conditions. Classification of these samples has

traditionally been performed visually, and the inclusion of CNNs helps eliminate the

user bias associated with visual analysis, which is another possible objective within the

scope of this project. The provided dataset formed a catalog of 2972 SEM grayscale

images with over 700 unique synthetic particles. Each image measured 1280x1024

pixels and contained a footer with information about the SEM setup, as well as the

date and other parameters from the originating laboratory. These images were taken

as the input data for the CNNs, but the truth values had to be established in order

to carry out the supervised learning classification task. The aforementioned string

encodings became the target truth values for the CNN to learn.

3.5 Neural Network Methodology

Data pre-processing steps included cropping every image before passing into the

CNN through use of the Th-MakerX tool recommended by Shoji et al [45]. The crop

was necessary to remove the image footer and project identifier string seen in Figure 3.
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In certain images, the project string was located in the top left of the images, so a crop

was made on both the top and bottom of each picture. The cv2 module in python was

used to resize every image read in to be 300x250, with cubic interpolation. Because

of the small size of the dataset and the inability to obtain more data, various image

augmentation methods were used to present a greater variety of sample imagery to

the CNN. A rotation range of 10 degrees was added, as the orientation of the sample

in the SEM images is arbitrary to begin with, so reorienting them should not change

classification. Random brightening and darkening effects in a range of 0.8-1.2 of the

original brightness levels were applied. Random horizontal flipping was added as well.

In addition, the image intensity values were rescaled to a range of 0 to 1.

Several variations on a CNN type model were tested for this project. The first

type was a shallower network based on the model presented by Shoji et al [43].

that uses a single convolutional layer and max pooling layer, before passing to a

hidden layer and then an output with the desired number of classes. Further testing

presented better results with a network that used more convolutional, max pooling,

and hidden dense layers. A specific step in the LANL morphology chart was chosen

as an exploratory effort for the project. Step two was picked as it presented a wide

variety of morphological traits without having a large amount of classes to choose

from. Incidentally, the third class given in the second lexicon step did not exist in the

dataset as the chemical characteristics of the uranium in the samples did not allow for

crystalline growth. As such, the deep learning task turned into a binary classification

problem, which aimed to predict if a given sample was rounded/blocky or a mixture

of rounded and crystalline. If it is possible to achieve this, then results could feasibly

be extended to the other three remaining labelled steps in the LANL flowchart in

order to augment or improve a nuclear forensics analysis capability.

A pipeline had to be established in order to properly read and process the data.
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The actual images were unlabelled with regards to the truth values and had to be

associated with their respective steps and morphological characteristics. This was ob-

tained by reading in the images and checking their file name for project and particle

number (ex: Q019907C5102.png), and then searching a data matrix for the morpho-

logical traits associated with that particle. Several images could not be processed by

the cv2 module, so they were thrown as exceptions and not read in. Once the images

were stored as arrays they were checked for possible class imbalances. The first cat-

egory in step two was the majority class, with 1005 images in the training dataset,

while the mixture category contained 664. A class weight of 1.51 for class two was

used to give the weights of the mixture images 1.51 times more importance than the

weights of the rounded images, thus equalizing the categories during training. Several

model parameters were tested by choosing from a parameter list and training with

several possible combinations.

Figure 12 shows the overall model architecture, which contained parameters of

0.5, 0.5, 0.6 for the dropout layers, a l2 kernel regularization of 0.0005, and gradient

clipping at 0.5 to prevent exploding gradients and improve behavior in the vicinity

of steep cliffs in the loss-function space. Experiments were run to check for accuracy

metrics, as it measured the ultimate goal of whether or not a CNN could classify

particles as well as a human analyst. A preliminary test in this area was to run the

network without regularization techniques and see if the training set accuracy could

reach 100%. This was indeed the case; after nearly 300 epochs the network was able

to overfit and learn the training set. This indicated that the network had sufficient

capacity for the task, and was an ideal starting point for validation testing. Three-

fold cross-validation was used to balance training times and statistically significant

metric reporting. Finally, area under the curve (AUC) values were produced that

outlined the performance of the classifier over each epoch. All code was written with
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python 3.7.3, keras 2.2.4 and tensorflow version 1.13.1.

conv2d_1: Conv2D
input:

output:

(None, 300, 250, 1)

(None, 298, 248, 16)

activation_1: Activation
input:

output:

(None, 298, 248, 16)

(None, 298, 248, 16)

dropout_1: Dropout
input:

output:

(None, 298, 248, 16)

(None, 298, 248, 16)

max_pooling2d_1: MaxPooling2D
input:

output:

(None, 298, 248, 16)

(None, 149, 124, 16)

conv2d_2: Conv2D
input:

output:

(None, 149, 124, 16)

(None, 147, 122, 32)

activation_2: Activation
input:

output:

(None, 147, 122, 32)

(None, 147, 122, 32)

dropout_2: Dropout
input:

output:

(None, 147, 122, 32)

(None, 147, 122, 32)

max_pooling2d_2: MaxPooling2D
input:

output:

(None, 147, 122, 32)

(None, 73, 61, 32)

flatten_1: Flatten
input:

output:

(None, 73, 61, 32)

(None, 142496)

dense_1: Dense
input:

output:

(None, 142496)

(None, 256)

dropout_3: Dropout
input:

output:

(None, 256)

(None, 256)

dense_2: Dense
input:

output:

(None, 256)

(None, 2)

2660836246752

Figure 12. Model architecture that was used throughout the project. Final output
layer used two nodes with a softmax activation. A Nadam optimizer was used for all
tests.
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4. Results

4.1 Predicting Q-value from binary morphology strings

Various classification models were fit against the binary morphology data in an

attempt to predict which project a hypothetical particle resembled most. The pre-

dictive capability of these models was examined through use of accuracy reporting

metrics in order to assess the confidence in said prediction. In particular, the random

forest classifier was used to investigate classification accuracy, feature importance,

and predictive capabilities. This was done by splitting the main dataset into a two

groups of 90% non-Test and 10% Test or Holdout. A common split in machine learn-

ing processes is a 70/30 split, but the provided data contains too few points in the

minority classes, as seen in Figure 13, thus to accurately train a classifier algorithm

a 90/10 split is used instead. Total class distribution counts can be seen displayed

numerically in Table 13 in Appendix B.
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Figure 13. Distribution of particles for each Q passed into the machine learning algo-
rithms.

The non-Test dataset is then upsampled to make the minority classes have equal

amounts of data as the majority class. This is done through the use of synthetic data
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independently with SMOTE and ADASYN, or non-synthetic with random sampling

with replacement. Once the new non-Test dataset contains equal amounts of points

in all classes, it is split into training and validation datasets, this time with a more

common 70/30 split. Several different classification models were then trained and

tested against the dataset to check for relative performance metrics.

Table 5. SMOTE classification performance.

Validation Set TestSet
Accuracy % Accuracy % Classifier

50.29 18.18 KNeighbors
3.51 3.84 SVC
54.97 19.67 Decision Tree
55.67 21.21 RandomForest
28.89 19.67 Bernoulli NB
32.63 15.15 LDA
53.34 18.18 GradientBoostingClassifier

Table 6. ADASYN classification performance.

Validation Set TestSet
Accuracy % Accuracy % Classifier

45.83 16.67 KNeighbors
2.5 1.51 SVC
51.94 16.67 Decision Tree
54.07 18.18 RandomForest
39.07 19.69 Bernoulli NB
35.27 13.63 LDA
49.09 16.67 GradientBoostingClassifier

At first glance, the values from Tables 5 and 6 seem low compared to many of

the high 90% accuracy metrics reported in the literature. However, it is important

to keep in mind that overall accuracy is reported, which compares the amount of

predicted labels that exactly match the true output labels. In a multiclass classifi-

cation problem, a random guess has a 100 · 1/classes % chance of making a correct
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Table 7. Performance comparison of validation set accuracy between oversampled and
non-oversampled datasets.

Unmodified SMOTE ADASYN
Validation Acc % Validation Acc % Validation Acc % Classifier

15.16 53.66 48.09 KNeighbors
16.85 36.44 31.19 SVC
21.91 59.43 56.54 Decision Tree
21.91 58.79 56.91 RandomForest
23.03 43.86 40.2 Bernoulli NB
24.71 40.48 32.96 LDA
21.34 53.02 52.18 GradientBoosting

guess. In this case, a random guess has a 1/55 ≈ 1.8% chance of correctly predicting

the output class. Thus, the classifiers which report accuracy metrics above 10% are

roughly 5 times more effective than a random guess, which indicates a consistent pre-

diction capability. Validation set results are higher than those of the test set because

the validation set had been included in the original oversampling, which meant it

more closely resembled the dataset used for training. Both synthetic oversampling

techniques performed better than the unmodified dataset as seen in Table 7. In each

scenario, the data was split into three groups: training, validation and test. The

ADASYN and SMOTE results were trained and tested on oversampled data, thereby

boosting the amount of particles that could be used for reporting of accuracy metrics.

In an attempt to understand the machine learning algorithm’s decision process,

the feature importances module of scikit-learn’s decision tree classifiers was used to

determine which steps of the LANL lexicon were the most important in classifying

particles according to the Q values. When used on the GradientBoostingClassifier,

the top five input features that returned were: S4FA (Blocky), S3F4 (Sub-angular),

S3F6 (Very Angular), S1F3 (Agglomerate), S3F3 (Sub-rounded), demonstrated in

Figure 14. Once the model was trained, each classification technique could use scikit-
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Figure 14. An ordered representation of the normalized feature importance on Q-value
classification from the GradientBoostingClassifier.

learn’s predict capability on the test datatset, which returns the probability that

a test sample belongs to each Q-class as seen in Figure 15. This method allows a

user to check and see which creation conditions a particle most closely resembles.

In this manner, creation conditions can be compared for similarity. The predict

functionality would allow a user to compare a new test particle against the synthetic

reference particle dataset. Another extremely useful aspect of this functionality is

the reduction in creation conditions that a test particle has to be compared against.

Figure 15 shows that a test particle has the highest chance of belonging to 4 out of

the total 56 Qs, something that could help analysts quickly narrow down comparisons

when working on very large datasets. As an example, Figure 15 shows that a sample

particle has the highest probability of belonging to Q019908, Q019914, and Q016317,

with a low chance of belonging to Q016322. These Qs with high probabilities are

linked by similar creation conditions in the additive and final product categories, and
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could be a link that is explored by an analyst in the forensic process.

Figure 15. An example prediction array. After training, machine learning classifiers
output the probability that a particle belongs to each Q. The first element in the array
is the chance that the test particle belongs to the first Q-value, and so on.

4.2 Creation Condition Analysis

Comparisons between particle morphology and specific creation conditions were

also pursued through exploration of possible trends in morphological characteristics

between creation conditions. Plots that displayed the normalized amount of parti-

cles in each lexicon step for given creation conditions allowed for a first-pass look at

possible categories of interest. For example, in Figure 16 the percentage of particles

in each part of step 3 of the lexicon are shown and grouped according to their pre-

cipitation temperature. Error bars are represent trait occurrence uncertainty and are

calculated via

∆x = x

√(∆y

y

)2
+
(∆z

z

)2
, (15)

where y and z are obtained from the ratio of morphological traits observed to total

particle counts, and x is the resulting ratio of y and z [46]. As such, the formula is

more simply stated as:

∆x =
traits observed

total particles

√(∆traits observed

traits observed

)2
+
(∆total particles

total particles

)2
. (16)
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Figure 16. A step-wise comparison of particle morphology occurrence between creation
condition parameters. In this case precipitation temperature [◦C] is measured against
particle angularity.

A total of seven creation conditions and 4 lexicon steps were plotted, which created

35 plots of particle morphology creation conditions, all of which can be found in Ap-

pendix B. Of the listed creation conditions, the final product was found to be the

most useful discriminant by visual inspection, as particles had visibly different mor-

phologies from final product to final product. The fifteen final products were broken

into two different categories: pure final products, and mixed phase final products.

These categories allowed for an investigation into the correlation between creation

process chemistry and resultant particle morphological features. Instead of training

machine learning classifiers to predict Qs which represented collections of creation

condition parameters, machine learning classifiers were trained to predict final prod-

ucts given input binary morphology strings. As with particle counts in the Q classes,

the problem-space featured strong majority classes, and many minority classes, as

seen in Figure 17.

The balance of particles in the pure final product classes compared to the mixed

final products was roughly 50% in each. First the pure final product classes were

trained and tested on to see if classifiers could learn to distinguish between morpho-
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Figure 17. Particle class distribution for final product groups.

Table 8. SMOTE classification performance on pure final products.

Validation Set TestSet
Accuracy % Accuracy % Classifier

74.164 44.231 KNeighbors
78.067 51.923 Decision Tree
79.926 55.769 RandomForest
78.439 51.923 GradientBoosting
58.736 19.231 GaussianNB
63.197 25.0 Bernoulli NB
64.870 26.923 LDA

logical features that resulted from pure final products. The results of this process can

be seen in Table 8.

Accuracy values were markedly higher than prediction efforts on Qs, in part be-

cause of the dramatic reduction in categories to be guessed, but also as a result of

tying particle morphology to individual creation conditions that may have influence

on their final topology. The feature importances module of scikit-learn’s decision

tree classifiers was once again used to determine which steps of the lexicon were the

most important in classifying particles; this time according to their pure final prod-

ucts. When used on the GradientBoostingClassifier, the top five input features that
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Table 9. A survey of the complete final products in the synthetic particle creation
process.

Encoded Final Product Unencoded Final Product

F1 UO3
F2 U3O8
F3 UO3, UO4, U3O8
F4 U3O8, UO3, UO2(OH)2 hydrate, UO2F2
F5 U3O8 with very minor UO2F2
F6 U3O8 with minor UO2F2
F7 U3O8 with UO2F2
F8 ADU
F9 AUC
F10 UO4
F11 N/A (UNH)
F12 Schoepite
F13 U Oxide
F14 UO2F2 hydrate
F15 U3O8, UO3

returned were: S3F6 (Very Angular), S4FG (Irregular), S1F1 (Individual Particle),

S1F3 (Agglomerate) and S4FN (cracked) as shown in Figure 18. The least important

features involved many of the step 4 characterizations such as S4FC (Lenticular),

S4FD (Prolate), S4FI (Curved), S4FJ (Bent), and S4FL (Flattened).

Figure 19 graphically demonstrates the model’s classification performance by dis-

playing true positives, false positives, true negatives and false negatives for each pure

final product. In a scikit-learn confusion matrix, entries in row i, column j, are the

number of observations actually in group i but predicted to be in group j. For ex-

ample, Figure 19 shows 15 correct predictions of F2 and 5 erroneous predictions of

F2 particles as F8. F2 and F8, U3O8 and ADU respectively, are the classes with the

strongest representation in the test set and are also the classes with the most overlap

in prediction by the classifier. This points towards an avenue that may be explored

during failure analysis efforts. Once trained, the machine learning models were used

to associate mixed oxide final products with pure final products in an attempt to
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Figure 18. An ordered representation of the normalized feature importance from the
GradientBoostingClassifier for classification on pure final products.

replicate a more realistic forensics process. The predict functionality of scikit-learn

was used to take binary strings of particles with mixed oxide final products and pre-

dict which pure final product they most resembled. Final products F3 through F7, as

well as F15 were of interest here, and a classifier that could successfully relate the two

categories would imply a consistency of morphological traits across final products.

Mixed Oxide Prediction Using A Pure Final Product Classifier

After being trained on pure final products, machine learning classifiers were given

particles from Qs with mixed phase final products. Scikit-learn’s predict functionality

was used as a test to see if mixed oxide final products could be related to their pure

counterparts. Accuracy metrics were then reported, by counting the amount of correct

comparisons (i.e. if the predict function outputs a final product of U3O8 or UO4 for

a mixed oxide particle with a final product of U3O8, UO4) versus the number of
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Figure 19. Confusion matrix for the pure final product test set resulting from a trained
GradientBoostingClassifier.

incorrect comparisons. Figure 20 shows the results for each class of mixed oxide, with

varying accuracy levels across the board. These results show that the morphology of

pure final products is consistent, and persists even when added to other materials to

form a mixed oxide. As such, the pure final products may serve as a discriminator

across a wide range of mixed final products.

4.3 Hyperparameter Tuning

Machine learning models of all types are parametrized by a set of hyperparam-

eters that may be controlled by the user to maximize the utility of the model [47].

These controls are used to configure different aspects of the learning algorithms and

can have a wide range of effects on the resulting model’s performance. The process
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Figure 20. Accuracy results from using the scikit-learn predict function to correlate
the mixed oxide final products to their pure counterparts. A random guess threshold
line is included for ease of performance comparisons.

of finding the best hyperparameters for each model given a dataset is called hyperpa-

rameter search and is either performed manually [48,49] or through searching a grid of

input parameters [23]. These methods of finding ideal hyperameters take real-world

considerations into account, as a perfect search would be exhaustive of most if not

all possible parameters, something that is not feasible under current computational

performance levels. As such, models are tested on the validation set with a variety of

hyperparameters, and the model settings that result in the highest reporting metric

are typically selected for the final model.

An effort was made to increase the accuracy of prediction on the final product cre-

ation condition. The GradientBoostingClassifier method was used because of its high

accuracy marks throughout creation conditions, and its plethora of hyperparameters

that allowed for fine-tuning. Scikit-learn’s GridSearchCV routine was used, which ex-

haustively searches over a range of user defined parameter values for a given model.

Four different hyperparameters were chosen to tune due to their relative impact on fi-

nal model performance: n estimators, max depth, min samples split, and subsample.

The first parameter, n estimators, controls the number of boosting stages to be used.
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Gradient boosting is robust against over-fitting, so a large number of boosting stages

can usually lead to better performance [23]. Max depth sets the depth limit, and

thus the number of nodes for the individual trees. Min samples split is the minimum

amount of samples required to split an internal tree node. Machine learning rules of

thumb commonly advise for using a value that is 0.5-1% of the amount of data trained

upon. The final parameter, subsample, denotes the fraction of samples used for fit-

ting the individual base trees. If smaller than unity, this results in stochastic gradient

boosting. A value smaller than one also leads to a reduction in variance, and an

increase in bias [23]. After running GridSearchCV with the values listed in Table 10,

Table 10. An overview of the values used to hyperparameter tune the GradientBoost-
ingClassifier on the final products dataset.

Hyperparameter Values

n estimators 20, 40, 60, 80, 100, 200
min samples split 3, 4, 5, 6
max depth 3, 4, 5, 6, 7, 8, 9, 10
subsample 0.7, 0.75, 0.8, 0.85, 0.9, 1

an output of the tuned model gave parameters of max depth of 6, min samples split

of 4, n estimators of 200, and subsample equal to 0.85. This resulted in an accuracy

gain of roughly 2% in the validation and test sets, when averaged over five instances

of the GradientBoostingClassifier fitted with the optimized hyperparameters.

A KNeighborsClassifier was also used for hyperparamter tuning, to see if larger

increases in accuracy were possible with a different machine learning model. The

parameters that could be tuned were different in this case, with the three total pa-

rameters that consisted of: n neighbors, p, and weights. Controlling n neighbors

changes the number of neighboring points that the KNeighborsClassifier considers

when calculating class boundaries. By default this is held at five neighboring points.

Changing p had the effect of choosing the power parameter for the Minkowski metric.

When p = 1, the algorithm calculates the also known as the l1 norm, also known as
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the manhattan distance, where the space between two points is measured along axes

at right angles. With p = 2 the euclidean distance is used, known as the l2 norm.

For arbitrary p values, the Minkowski distance lp norm is used [23]. Weights con-

trolled the weight function used in prediction, with two main choices of Uniform or

Distance. Uniform weighing made all points in each neighborhood equally weighted.

Distance changed the weight of points in accordance with the inverse of their dis-

tance. In this setting, closer neighbors to a selected data point will have a greater

influence than those further away [23]. Table 11 shows the total parameter space

under consideration.

Table 11. An overview of the values used to hyperparameter tune the KneighborsClas-
sifier on the final products dataset.

Hyperparameter Values

n neighbors 3, 4, 5, 6
p 1, 2, 3
Weights Uniform, Distance

After using the same GridSearchCV and input dataset as the previous hyperpa-

rameter effort, the best parameters resulted in n neighbors = 4, p = 1, and weights =

distance. This resulted in a 1.68% increase in accuracy when averaged over 5 different

random splits of the dataset.

4.4 Classifier Performance Across All Creation Conditions

Scikit-learn classifiers were trained on the dataset in order to predict each cat-

egory of final product when given a binary morphology string. In this manner, a

comparison could be made between creation conditions to see which ones were the

easiest to distinguish between, given their class balances or resultant impact on par-

ticle morphology. Each model was trained on a dataset that had been expanded

through SMOTE oversampling, and later tested on held out non-oversampled data.
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SMOTE was chosen over ADASYN because it provided higher accuracy values in the

validation set with greater frequency than ADASYN, as seen in Table 7. Reported

balanced accuracy values in Figure 21 are from an average of 10 different runs, where

SMOTE and train test split routines were given randomly chosen seeds from a list of

values. An additional group of creation conditions was tested: pure final products,

which consisted of particles from the F1, F2, F8, F9, F10, F11, F12, and F14 final

products. Hyper-parameter tuning was not included in the following results.
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Figure 21. Adjusted, balanced accuracy results on the test set data for each classifier
used.

Because the class count is taken into consideration with the adjusted balanced

accuracy, the results of Figure 21 allow for a look into the relative impact of each

creation condition on a particle’s morphology. Calcination temperature, followed by

source materials and final products, all have the highest balanced accuracy score. This

shows that of the available parameters, these creation conditions are most closely tied
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to particle morphology and serve as the best discriminators in the creation process.

Narrowing down which creation conditions matter can help clue analysts into specific

processes when observing test datasets. In addition, this serves to inform future

studies on which creation conditions to look into at greater depth. Of the remaining

parameters, additive classification results fall below zero and thus consist of models

that perform worse than random guessing, implying minimal association with particle

morphology.

Some feature engineering was conducted in this step to check for possible accuracy

gains. The VarianceThreshold function was used to perform dimensionality reduc-

tion on the original dataset with 26 columns. Two variance levels were tested: 0.16

resulting from an input of p=0.8 and a variance of 0.09 which corresponded to p=0.9.

These probability values created datasets that had 9 columns and 15 columns, respec-

tively. Lower probability values were not extensively tested, as the dataset lost too

many columns and lower accuracy values became increasingly common. The variance

reduced dataset was compared to a non-hyperparameter tuned GradientBoosting-

Classifier on classification of particles into final products, the results of which can be

seen in Table 12. Results indicate that removal of columns consisting of either 90%

Table 12. Final product classification results from the standard dataset compared to
variance reduced datasets. Accuracy values are averaged over 5 random splits.

# of Columns Probability value Balanced Test Acc

26 Unmodified Dataset 20.89
9 p = 0.8 20.01
15 p = 0.9 25.23

ones or 90% zeros yields an ideal amount of dimensionality reduction in the dataset

by removing the columns that do not communicate useful information to the machine

learning model. For probability levels lower than this, useful columns begin to be

removed, and thus accuracy gains can no longer be expected.
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4.5 Failure Analysis

After training a GradientBoostingClassifier to distinguish between pure final prod-

ucts, a precursory exploration into the misclassifications was conducted to understand

why particles were being incorrectly labeled. This comparison was carried out both

visually on the SEM images themselves, and feature-wise on the input binary data.

One of the first misclassifications arose from particle Q16316C1100 with final prod-

uct U3O8 being labelled as ADU. Figure 22 compares the misclassified particle with a

particle consisting of ADU as a final product. An examination of the two shows that

their topological features are quite similar and could certainly appear identical to a

human analyst. However, because the machine learning classifier only relates input

particles to creation conditions as a whole, other instances of ADU were inspected to

find additional related particles.

(a) ADU particle example (b) U3O8 Particle that was incorrectly classi-
fied as ADU

Figure 22. A GradientBoostingClassifier misclassification. Here similar particles are
displayed to explain possible confusion between particles.

Figure 23 again displays the misclassified U3O8 particle on the right, but this

time compares against an example ADU which is vastly different. Particles with the

jagged surface features seen in Figure 23 (a) are not successfully differentiated from

the sample in Figure 23 (b) due to the lack of topological micro-features in the first
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four steps of the lexicon. The macro-features: overall shape, angularity, and sphericity

appear similar between images and may contribute to the misclassifications that a

machine learning algorithm could make when analyzing particles with a truncated

lexicon.

(a) ADU particle example (b) U3O8 Particle that was incorrectly classi-
fied as ADU

Figure 23. A GradientBoostingClassifier misclassification. Here different particles are
displayed to present possible limitations in the truncated lexicon.

(a) AUC particle example (b) U3O8 particle that was incorrectly classi-
fied as AUC

Figure 24. A GradientBoostingClassifier misclassification. Here similar particles are
displayed to explain possible confusion between particles and their creation conditions.

Another incorrect prediction involves particle Q163361050 of final product U3O8

which was incorrectly classified as AUC. This misclassification was more of a direct

comparison than the previous event, as there were only 20 particles of final product
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AUC in the entire dataset, and all displayed similar morphological features. Figure

24 shows two particles that are visually similar but differ in their final products.

The near-identical features of the two particles may have required more steps of

the LANL lexicon to successfully distinguish. A final comparison of the classification

(a) U3O8 particle example (b) ADU particle that was incorrectly classi-
fied as U3O8

Figure 25. A GradientBoostingClassifier misclassification. Here similar particles are
displayed to explain possible confusion between particles and their creation conditions.

errors shows an ADU particle Q19333C1020 being incorrectly labeled as U3O8. Visual

inspection reveals similarities to particles in the Q19916 series as shown in Figure 25.

As with other cases before, comparison to other Qs with U3O8 as a final product

also showed some dramatic differences, evidenced in Figure 26. Additional samples

and steps are likely required to raise the consistency of correct classifications between

creation conditions.
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(a) U3O8 particle example (b) ADU particle that was incorrectly classi-
fied as U3O8

Figure 26. A GradientBoostingClassifier misclassification. Here different particles are
displayed to explore limitations of the truncated lexicon.

4.6 Neural Network Results

When put to the task of assigning correct lexicon step classifications, the network’s

performance increased over the course of the 400 epoch training time, as seen in Figure

27. Model loss results in Figure 28 show neural network overfitting on the data around

the 250th training iteration, thus future efforts on a similar dataset would benefit from

training for similar timescales. Accuracy results in the three-fold cross validation test

were reported as 0.7510, 0.7615, and 0.7824, averaging 76.5% classification ability

after training. A final test set classification of 74% was obtained on the held-out

images, which means that 74% of the test images were correctly classified as either

Rounded/Blocky or Mixture from step two of the lexicon. A custom callback was

created that produced training and validation area-under-the-curve (AUC) values

after each epoch of training. Final results output a value between 0 and 1, where

a model with 100% incorrect predictions has an AUC of 0, and a model with 100%

correct predictions has an AUC of 1. This was used for two reasons: AUC values

are scale invariant, and measure how well predictions are made regardless of class

balance. Second, the AUC is classification threshold invariant, as it measures the

59



www.manaraa.com

quality of the model’s predictions regardless of the probability threshold used. After

training, the test set AUC halted close to 0.77, which is above the random guessing

baseline of 0.5 and shows that a discriminative ability between rounded/blocky and

mixture exists.
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0.5
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Figure 27. Model accuracy over 400 training epochs.
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Figure 28. Model loss after training. Binary crossentropy was used for the step two pre-
diction, as particles in the dataset were classified as either rounded/blocky or mixture,
and never crystalline.
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5. Conclusions

5.1 Summary

This research project encompassed an analysis of synthetic uranium particulate

with well documented creation conditions. Previous research had indicated the par-

ticulate creation conditions were tied to resultant morphological features [50–53].

However, these approaches had not used a standardized lexicon to make objective

comparisons between particles. This research represented a first effort at using a

lexicon of particle morphology in tandem with machine learning techniques to derive

relationships between creation conditions and final morphology. Results show that

trends in morphology can be analyzed using machine learning techniques, and that

classification efforts can be applied in a nuclear forensics process to glean additional

information that may not have been available before.

Likewise, it was shown that creation conditions do in fact impact the final particle

morphology, a result backed up by the forensic literature. The relative distinguisha-

bility is based on the individual creation conditions. In particular, source materials,

final chemical compound, and calcination temperature all appeared as having the

strongest association with particle morphology. The last result ties in well with the

work done by Schwerdt et al [50] which shows variations in particle size and sphericity

as a function of calcination temperature. The association with final chemical com-

pound implies that trends in morphology are strongly tied with chemical composition

of the sample. Adding chemical composition or elemental abundance data in with the

one-hot encoded morphology strings could be more successful than using morpholog-

ical data alone, and may result in higher accuracy values in future studies. Finally,

results showed that trained machine learning algorithms demonstrated a potential for

informing analytic procedures of material classification. The present work provides
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the foundation required to justify development of analyst tools, which could serve to

reduce analysis times, make quick comparisons between datasets, and provide new

insights that may not have been available before.

5.2 Initial Goals

At the start of the project, several questions were outlined and formed the guiding

efforts of the research:

1. Is it possible to distinguish among the project numbers in the syn-

thetic dataset?

2. What are the most useful morphological features of a sample particle?

3. Can this dataset form an adequate reference for real life forensics

data?

4. Can any correlation be determined to associate a particle’s morpho-

logical features with the chemistry conditions under which it was

formed?

Answering the first question indicated that a trained machine learning classifier

could, in fact, distinguish between project numbers when given a test particle. Ad-

ditional particles would be necessary to increase classifier accuracy to levels that

would be consistently useful to nuclear forensic analysts, but the results still prove

an interesting utility that should be further explored. A full application of this tech-

nique could serve to increase the speed at which analysts make connections between

test samples and their unknown creation conditions. The second question was an-

swered through use of the FeatureImportances routine of a trained GradientBoost-

ingClassifier. It was found that the most important features commonly included
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S1F3 (Agglomerate) and S3F6 (Very Angular), with other features becoming more

or less important depending on the type of creation condition that was being clas-

sified. Question three is answered as a ‘possibly’. If the dataset is to be used as a

reference for real life datasets, then additional statistics are needed to ensure that

proper comparisons can be made between test particles and the synthetic ones used

for reference. The fourth and final question was answered by training a classifier to

predict a particle’s specific creation condition. Results were reported with the use

of balanced, adjusted accuracy metrics, which took class imbalances into account

and reported the macro-average of accuracy on each creation condition. As reported

above, it was shown that three of the creation conditions were most closely associ-

ated with final morphology. Further research is needed to quantify the exact extent

that these creation conditions influence particle morphology, but the current results

provide excellent building blocks for further efforts.

5.3 Lexicon Steps

Being able to classify the particles according to their shape indicates that the trun-

cated LANL lexicon with just the first four steps was able to replicate morphology

classes. This shows that the lexicon is relevant and useful for efforts involving com-

parison of particulate against one another, and hopefully provides a starting ground

for widespread adoption of the method. Of the steps used, 1 - 4 focus on large scale

features: step one covers particle nature, step two captures overall morphology, step

three measures edge characteristics and step four covers a range of sphericity values.

The addition of steps 5 - 11 would allow for a selection of most descriptive steps from

the entire lexicon. Step 8 is suspected to be one of the more useful steps, as it covers

particle surface features; many of these descriptors are unique and cover a wide vari-

ety of indentations and patterns. Efforts in the realm of error analysis showed that
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addition of surface features would serve to increase particle distinguishability, reduce

misclassifications, and improve accuracy scores of the models.

5.4 Future Work

A first priority in any future work on the SEM dataset would involve fully convert-

ing every particle into a binary string in accordance with the LANL lexicon. Once all

steps had been completed, machine learning techniques could be applied to discover

which steps were the most useful for associating particles with creation conditions, an

important result in it of itself. Narrowing down which aspects of particle morphology

mattered most would help clue analysts into possible ties between specific chemical

creation processes and resultant particle shape.

A future effort with binary encoded data being fed into machine learning classifiers

would greatly benefit from the presence of balanced classes. This is not a cheap

endeavor, so if not realistic, then a dataset with classes that display a lesser degree

of imbalance than the current dataset would still be of service. The main issue

throughout the project was the multitude of minority classes with extremely low

representation. Regardless of machine learning algorithm used, it is difficult to learn

on a multiclass datatset where the minority classes have a single digit amount of data

points.

Another tool that would be useful to forensics analysts would be the ability to

conduct classifications on groups of particles. In essence, an analyst would give the

algorithm several particles at once, and the already-trained classifier would report

back the most likely Q (or Qs) that this batch came from. This technique would

allow analysts to view samples as an overarching whole, and see what characteristics

they collectively displayed.

In regards to the neural network approach, a future effort would see improvement
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from additional SEM imagery to train on. A dataset with images free of text or

other labels would eliminate the need to crop labels out of the picture. This would

allow for a full view of the particles as captured by the SEM, which would help add

morphology for the neural networks to learn. Because the work done in this area was

exploratory, additional steps in the lexicon could be run through the neural network

to see if they were more or less accurate than the step two example conducted here.
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Appendix A. Morphology Flowchart

Figure 29. Flowchart for the particle nature classification. This first step allows for large
particles with sub–components to be classified separately from their sub–particles [4].

Figure 30. Continuation of the flowchart classification steps [4].

Reprinted by permission from Springer Nature: Springer Netherlands, Journal

of Radioanalytical and Nuclear Chemistry, A lexicon for consistent description of

material images for nuclear forensics, Alison L. Tamasi et al, 2016
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Figure 31. The last step that has currently been applied to the particle dataset [4].
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Appendix B. Creation Conditions

Figure 32. First portion of the encoded creation conditions table.

Figure 33. Second portion of the encoded creation conditions table.

Figure 34. Last group in the encoded creation conditions table.
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Table 13. Particle statistics for the various Qs.

Q-class Count in Class Q-class Count in Class

Q016316 70 Q019338 10
Q016317 16 Q019339 6
Q016312 15 Q019340 10
Q016314 11 Q019341 6
Q016318 15 Q019342 15
Q016320 8 Q019343 15
Q016322 11 Q019344 14
Q016324 9 Q019345 14
Q016326 8 Q019346 13
Q016328 16 Q019907 9
Q016330 12 Q019908 10
Q016332 10 Q019909 7
Q016334 15 Q019910 8
Q016336 11 Q019911 7
Q016338 8 Q019912 10
Q016340 10 Q019913 10
Q016342 10 Q019914 9
Q019329 10 Q019915 10
Q019330 5 Q019916 14
Q019331 10 Q019917 20
Q019332 10 Q019918 16
Q019333 10 Q019919 10
Q019334 10 Q019920 15
Q019335 9 Q019921 5
Q019336 10 Q019922 8
Q019337 10 Q019923 9
Q019924 14 Q019926 6
Q019925 12 Q019927 8

Table 14. The class distribution for the source materials creation condition.

Source materials Particle count in class

UNH 477
UO2F2 162
UNH stripped from 30% TBP, 70% hexachlorobutadiene 10
UNH stripped from 30% TBP, 70% n-dodecane 10
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Table 15. The class distribution for the precipitation temperature creation condition.

Precipitation temperature [◦C] Particle count in class

20 230
25 158
30 20
50 245
None 6

Table 16. The class distribution for the precipitation pH creation condition.

Precipitation pH Particle count in class

1 30
5 9
6 28
6.5 10
8 429
9 131
11 10
None 12

Table 17. The class distribution for the additive creation condition.

Additive Particle count in class

None 589
Gaseous Reactants 10
1 Mol HNO3 6
2 Mol Urea 5
4 Mol Urea 39
6 Mol Urea 10

Table 18. The class distribution for the calcination temperature creation condition.

Calcination temperature [◦C] Particle count in class

300 89
350 27
400 15
500 101
800 94
900 110
975 217
None 6
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Table 19. The class distribution for the final product creation condition.

Final Product Particle count in class

UO3 15
U308 251
UO3, UO4, U308 15
U308, U03, UO2(OH)2 hydrate, UO2F2 31
U3O8 w/ very minor UO2F2 22
U3O8 w/ minor UO2F2 8
U3O8 and UO2F2 20
ADU 145
AUC 20
UO4 16
N/A (UNH) 6
Schoepite 46
U Oxide 9
UO2F2 hydrate 15
U3O8, UO3 40
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Figure 35. Processing method morphology feature occurrence for step 1 of the lexicon
chart.

71



www.manaraa.com

Ro
un

de
d/

Bl
oc

ky

M
ix

tu
re

Cr
ys

ta
llin

e

0.0

0.2

0.4

0.6

0.8

nP
ar

tic
le

s (
no

rm
al

ize
d)

Processing Method Morphology Traits

Ashing
Direct Pick
Sonicated

Figure 36. Processing method morphology feature occurrence for step 2 of the lexicon
chart.
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Figure 37. Processing method morphology feature occurrence for step 3 of the lexicon
chart.
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Figure 38. Processing method morphology feature occurrence for step 4 of the lexicon
chart.
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Figure 39. Processing method morphology feature occurrence for shape portion of step
4 in the lexicon chart.
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Figure 40. Source material morphology feature occurrence for step 1 of the lexicon
chart.
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Figure 41. Source material morphology feature occurrence for step 2 of the lexicon
chart.
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Figure 42. Source material morphology feature occurrence for step 3 of the lexicon
chart.
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Figure 43. Source material morphology feature occurrence for step 4 of the lexicon
chart.
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Figure 44. Source material morphology feature occurrence for shape portion of step 4
in the lexicon chart.

77



www.manaraa.com

In
di

vi
du

al

Co
ng

lo
m

er
at

e

Ag
gl

om
er

at
e

0.0

0.2

0.4

0.6

0.8
nP

ar
tic

le
s (

no
rm

al
ize

d)

ppt Temp Morphology Traits

20
25
30
50
None

Figure 45. Precipitation temperature morphology feature occurrence for step 1 of the
lexicon chart.

Ro
un

de
d/

Bl
oc

ky

M
ix

tu
re

Cr
ys

ta
llin

e

0.0

0.2

0.4

0.6

0.8

nP
ar

tic
le

s (
no

rm
al

ize
d)

ppt Temp Morphology Traits

20
25
30
50
None

Figure 46. Precipitation temperature morphology feature occurrence for step 2 of the
lexicon chart.
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Figure 47. Precipitation temperature morphology feature occurrence for step 3 of the
lexicon chart.
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Figure 48. Precipitation temperature morphology feature occurrence for step 4 of the
lexicon chart.
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Figure 49. Precipitation temperature morphology feature occurrence for shape portion
of step 4 in the lexicon chart.
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Figure 50. Precipitation pH morphology feature occurrence for step 1 of the lexicon
chart.
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Figure 51. Precipitation pH morphology feature occurrence for step 2 of the lexicon
chart.
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Figure 52. Precipitation pH morphology feature occurrence for step 3 of the lexicon
chart.
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Figure 53. Precipitation pH morphology feature occurrence for step 4 of the lexicon
chart.
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Figure 54. Precipitation pH morphology feature occurrence for shape portion of step
4 in the lexicon chart.
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Figure 55. Additive morphology feature occurrence for step 1 of the lexicon chart.
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Figure 56. Additive morphology feature occurrence for step 2 of the lexicon chart.
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Figure 57. Additive morphology feature occurrence for step 3 of the lexicon chart.
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Figure 58. Additive morphology feature occurrence for step 4 of the lexicon chart.
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Figure 59. Additive morphology feature occurrence for shape portion of step 4 in the
lexicon chart.
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Figure 60. Calcination temperature morphology feature occurrence for step 1 of the
lexicon chart.
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Figure 61. Calcination temperature morphology feature occurrence for step 2 of the
lexicon chart.
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Figure 62. Calcination temperature morphology feature occurrence for step 3 of the
lexicon chart.
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Figure 63. Calcination temperature morphology feature occurrence for step 4 of the
lexicon chart.
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Figure 64. Calcination temperature morphology feature occurrence for shape portion
of step 4 in the lexicon chart.
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Figure 65. Final product morphology feature occurrence for step 1 of the lexicon chart.
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Figure 66. Final product morphology feature occurrence for step 2 of the lexicon chart.
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Figure 67. Final product morphology feature occurrence for step 3 of the lexicon chart.
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Figure 68. Final product morphology feature occurrence for step 4 of the lexicon chart.
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Figure 69. Final product morphology feature occurrence for shape portion of step 4 in
the lexicon chart.
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Appendix C. Glossary

Table 20. Commonly used terms throughout this thesis and their definitions.

Term/Abbreviation Definition

Project Number ex: 2010-87
Sample ID ex: Q019907
NIT ID ex: C8020
Class machine learning category that data belongs to

ex: dog, cat, bird
Feature/Predictor characteristics that the data may take on

ex: cost, size, weight
Random Forest a group of decision trees with random tweaks in each tree
Conglomerate a particle consisting of many dissimilar sub-particles
Agglomerate a mostly homogeneous mass of particles held together
ADU Ammonium diuranate or (NH4)2U2O7

AUC Ammonium uranyl carbonate or UO2CO3 · 2(NH4)2CO3

UNH Uranyl nitrate hexahydrate or UO2(NO3)2 · 6H2O
Schoepite (UO2)8O2(OH)12 · 12(H2O)
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Appendix D. GitHub Repository

The machine learning python scripts used in the research can be found in a private

GitHub repository located at:

https://github.com/dgum/Research/tree/master/Code

To access the repository and the files held therein, contact the author for access. The

main Research directory contains the following subdirectories of note:

• Code: containing the python files for analysis and use of machine learning

techniques on the lexicon encoded dataset.

• Readings: containing many different journal articles referenced in the course

of creating this thesis document.

• ExcelFiles: containing csv and txt files that hold many of the datasets im-

ported into the python scripts.

• Images: containing all the graphics used throughout the thesis.
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